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Strange nonchaotic attractors in autonomous and periodically driven systems

V. S. Anishchenko, T. E. Vadivasova, and O. Sosnovtseva
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We demonstrate that a strange nonchaotic attractor can be realized not only in quasiperiodically driven
systems but also in autonomous and periodically forced systems. We show that the destruction of an ergodic
torus via a band-merging crisis and the appearance of a strange nonchaotic attractor are applicable to a wide
class of dynamical systemsS1063-651X96)07109-7

PACS numbsgs): 05.45:+b, 02.60.Cb

I. INTRODUCTION the basic properties of two coupled ring maps and a periodi-
cally forced oscillator with an inertial nonlinearity. In Sec.

L i X . I|l we show that a SNA exists in certain parameter ranges of
trivial attracting sets that have been found and investigateg . 5 ;tonomous system of two coupled ring maps. The SNA
over the last yearfl—6]. A SNA is strange in a geometrical ig characterized by computation of autocorrelation functions.
sense; i.e., it has a fractal structure. On the other hand, thg gec. v we analyze the appearance of a SNA in a system
exponential divergence of the trajectories is absent from &t gifferential equations describing the dynamics of an oscil-

SNA; i.e., it is not chaotic. lator with an inertial nonlinearity. We summarize the results
The properties of strange nonchaotic attractors have pren Sec. V.

viously been investigated in a variety of systems, but in all
cases the SNA was found when a quasiperiodic forcing was Il. BASIC MODELS
applied. Such systems are characterized by the presence of at ) .
least two incommensurate frequencies with an irrational ra- We investigate two models: an autonomous magifn
tio. This condition creates a rough ergodic torus, which car@nd @ differential system with harmonic forcing .
be destroyed when parameters are varied. The band-merging 1he first model is two asymmetrically coupled ring maps:
crisis of ann-band ergodic torus has been suggested as one
mechanism for generating a SNA&]. The crisis is related to
the homoclinic touching of manifolds of a saddle torus co- +Acog2wu,), modl
existing with a stable torus in the phase space of the system.
This mechanism is not unique. The gradual fractalization of Ynt1=vY1¥n— (Kq/27)sSiN(27X,), (1)
a two-dimensional ergodic torus also apparently leads to a
SNA [8]. Un+1= Un+ Qo= (Kp/27)siN(27rUn) + y2(Yn+vn),
Given that the appearance of a SNA is related to the de-
struction of a two-dimensional ergodic torus, we are faced mod 1
with the following question: Is the SNA regime typical only _
of quasiperiodically driven systems or can it be observed in Un+1= Yo(Yntvn) = (Kof2m)sin(2muy).
other systems as well?
It is known that the regions of ergodic quasiperiodic mo-
tion in the parameter space of autonomous systerfis snd

A strange nonchaotic attract¢8NA) is one of the non-

Xn+1=Xn+ Q1= (K1/2m)SIN(27Xn) + ¥1Yn

In the case ofy,=0, the systen{l) is the ring map with
the quasiperiodic forcing at some values of the parameters
. i 3 Q,, K,. The winding number of this map is determined by
periodically driven systems iR® can have nonzero measure. oo
the parameter§), andK, and can be equal to an irrational

Hence, a rough two-dimensional ergodic tofli can be .
realized in these systems. When the nonlinearity of the s S\{alue(the reciprocal of the golden mean, for example
Y X Y YS” When a small coupling coefficientyg# 0) is introduced,

tem is increased, the measure of the quasiperiodic region Féedback appears between the ring maps, and the analogy

generally decreased while the measure of synchronizatio[%e,[ween systenil) and the quasiperiodically driven map is

regions is increased. Synchronization is thus associated Witbroken down. In this case, the system is two coupled maps
the destruction ergodic tori in three-dimensional systems. The secon.d model is a'periodically driven oscillator with '

_ _ . . . 2 . .
gfowfg;r’grigzpcdntqvg(t)iodr:nggﬂsggnilbggg d)irllnsths?[errigl(\)/vnith an inertial nonlinearity. The dynamical equations of the sys-
q P y fem in dimensionless variables have the following form:

phase space of dimensidf=4. This suggests that a SNA

can appear via a band-merging crisis in these systems as X=mx+y—xz+Asin(p7),
well.
The goals of this paper are to reveal band-merging bifur- y=—X, )
cations of ergodic tori in systems without external quasiperi-
odic forcing and to verify that the attractor arising after the z=—gz+gf(x),

band-merging crisis is a SNA.
The paper is organized as follows. In Sec. Il we describevhere
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FIG. 2. The largest Lyapunov exponent vs the parani€ter

region of ergodic motion at K;=Kj (0.8783
<K} <0.8784). Figures (B) and Xb) plotted for each sec-
ond iteration show thexu projection of phase trajectories
before and after the band-merging crisis, respectively. In Fig.
1(a) only one band of the invariant curve can be observed,
while Fig. 1(b) shows the merging of two bands. It is impor-
tant to note that the Lyapunov exponents are not sensitive to
this bifurcation(Fig. 2). Chaotic dynamics corresponding to
N1>0 occurs at larger values of the parametkn
(K;>1.1). Negative values af, in some ranges dk, are
due to the synchronization that inevitably occurs when cou-
pling is introduced.

The band-merging bifurcation leads to a SNA. While re-
vealed in numerical simulations, there is as yet no theorem

FIG. 1. Phase portraits of nonstrange and strange nonchaotic
attractors for systentl) at K;=0.8783(a) and K;=0.8784 (b).
Points are plotted for every second iteration. The largest Lyapunov 1.00
exponents for these cares adg=—0.65835<10 % (a) and 3
A1=0.188 33< 103 (b). These exponents are equal to zero within
the limits of numerical accuracy.

X2, x=0 ¢ o0 :
f =
=10, x<o.

The parameterm1 andg determine the natural dynamics 001 Lt o it i
of system(2). The parameteA is the forcing amplitudep is T 10 100 1000 10000
the normalized forcing frequency, ands the dimensionless i
time. The dynamics of syste(@) was studied in detail if9].

1.00

I1l. BAND-MERGING CRISIS IN COUPLED RING MAPS ()
As mentioned above, systeftt) can be considered as a

guasiperiodically driven ring map whep,=0. In this case
there are regimes of two-band ergodic tofi*in terms of a
map, they correspond to a closed invariant curaesome
parameter values. The band-merging crisis leads to the ap-
pearance of a SNA, which exists at a limit range of the
parameter space. We focus on the question of whether this L. ... . . .

C o0}

1000

10000

phenomenon takes place when a small couplipg#0) is 1 10 100
introduced. i
The parameteK ; is varied while the other parameters are
fixed (Q,=05, 0,=05(/5-1), K,=0.03, A=0.4, FIG. 3. The averaged squared autocorrelation function for the

v1=7v,=0.01). In the case,# 0, the bifurcation associated variablex for the case of nonstranda) and strangeb) nonchaotic
with the band merging of the invariant curve is found in theattractors. Note the logarithmic scale of the axes.
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FIG. 4. Poincareections of nonstrange) and strangeb) non-

chaotic attractors for systef2), plotted for every fourth iteration. FIG. 5. The averaged squared autocorrelation function for the
The largest Lyapunov exponents for these cases arwariabley for the regime of nonstrange) and strangéb) noncha-
N=—0.371x1072 (a) and \;=—0.265<10"2 (b). These expo- Otic attractors.
nents are equal to zero within the limits of numerical accuracy.

The functionsy, (i), C(i) for x(n) have been calculated for
proving the existence of a SNA in this instance. Therefore, iboth cases: before the band mergig € 0.8783) and after
is necessary to confirm the fractal structure of the attractor. li (K,=0.8784). The first condition means that the spectrum
was shown 10,17 that a SNA has a singular continuous is not continuous, and is met in both cases because the band-
spectrum. To diagnose this kind of spectrum we use thenerging bifurcation does not lead to chaos. Figurs 8nd
method proposed in12]. The autocorrelation function 3(b) show that the average squared autocorrelation function

(i) is determined as follows: C(i) goes to some constant level before the bifurcation
) _ (K,=0.8783) while the character of this function is changed
Ui = (X(N)x(n+i)) = (x(n))(x(n+1i)) after the bifurcation K,;=0.8784). This behavior o€(i)
X (x?(n))—{x(n))? ' confirms the fact that the attractor arising at the band merg-
ing has a singular continuous spectrum and is therefore a
where n=0,1,2, ... is a discrete time coordinate, andSNA. CalculatingC(i) versus the parameté¢,, we have
i=0,1,2, ... is a time shift. found that the SNA does not exist everywhere Kor>K73
To represent a singular continuous spectryrg(i) must  but is found within narrow parameter intervals, which alter-
satisfy the conditions nate with the regions of synchronization.
lim i, (1)#0,
i o0 IV. BAND-MERGING CRISIS IN SELF-OSCILLATOR

WITH PERIODICAL FORCING

.”m C(i)=0, It was shown in[9] that there is a four-band two-
= dimensional torus %2 in the phase space of systeff).
When parameters are varied, tHE?4orus is destroyed and a
transition to chaos takes place. However, we have found that
i-1 the 4T2 torus undergoes a band-merging bifurcation before
C(i)= }2 lr,/)z(( ). the chaotic attractor appears. The_ excitation paranreter
=1 chosen as a control parameter while the other parameters are

where

IJ_
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fixed (g=0.3,A=0.3,p=0.111). The band-merging bifurca- creases more slowly than in systéf), the character of the
tion of the ergodic &2 torus occurs am=1.0621. As a functionC(i) after the bifurcation is the same. Thus, in sys-
result of this bifurcation, a two-band attractor appears, but item(2) a SNA emerges as a result of the band-merging crisis
is not chaotic because the largest Lyapunov exponent tenad an ergodic two-dimensional torus.

to zero within the limits of numerical accuracy. The sigha-

ture of the spectrum of the Lyapunov exponents remains the V. CONCLUSIONS

same(0, “0,” “ —,”* —=") before and after the bifurcation.
The projections of Poincarsections of the attractors by the
secant surfacex=0 at m=0.062 05 andm=0.0621 are

We have found numerically that a band-merging crisis of
the two-dimensional tori can lead to a SNA not only for the
P . ; systems with quasiperiodic forcing but also for the systems
shown in Figs. 48 and 4b), respectively. Plotting each - L o :
fourth iteration of the Poincarsection, Fig. 4a) presents one ngcvgfé'r()do'c eenXCILiusotirl)r?gdre?:;ﬁn:;zr?geigrnplev?/hzstﬁg?gﬁér
band of the four-band invariant curve, while the band merg'mechaniémgof SqNA ADDearance are ossiblgin such svstems
ing can be distinguished in Fig(). PP P y

To detect the existence of the SNA, the behavior of theand whether there is a transition from SNA to chaos exclud-

functionC(i) was investigated. The autocorrelation function "9 the synch_ronlzatlon phenqmen_on on_the torus. Itis clea_lr
) L that SNA regimes can be realized in a wide class of dynami-
was calculated for the sequence of poip{s) of Poincare

T ) . . .cal systems and are not restricted to systems with quasiperi-
section; each second point was taken to avoid a perlodlgdiC forcing
component after the band merging. The calculation of the '
autocorrelation function for systef@) relies on the fact that
the return time for the secant surface is constant in the re-

gime being considered. Figure¢ab and §b) display the The research described in this paper was made possible in
function C(i) obtained for the attractor before and after thepart by the Russian State Committee of Science and High

bifurcation, respectively. Although the functio@(i) de-  School(Grant No. 95-0-8.3-66
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