
Strange nonchaotic attractors in autonomous and periodically driven systems

V. S. Anishchenko, T. E. Vadivasova, and O. Sosnovtseva
Physics Department, Saratov State University, Astrakhanskaya strasse 83, Saratov 410071, Russia

~Received 15 February 1996!

We demonstrate that a strange nonchaotic attractor can be realized not only in quasiperiodically driven
systems but also in autonomous and periodically forced systems. We show that the destruction of an ergodic
torus via a band-merging crisis and the appearance of a strange nonchaotic attractor are applicable to a wide
class of dynamical systems.@S1063-651X~96!07109-7#

PACS number~s!: 05.45.1b, 02.60.Cb

I. INTRODUCTION

A strange nonchaotic attractor~SNA! is one of the non-
trivial attracting sets that have been found and investigated
over the last years@1–6#. A SNA is strange in a geometrical
sense; i.e., it has a fractal structure. On the other hand, the
exponential divergence of the trajectories is absent from a
SNA; i.e., it is not chaotic.

The properties of strange nonchaotic attractors have pre-
viously been investigated in a variety of systems, but in all
cases the SNA was found when a quasiperiodic forcing was
applied. Such systems are characterized by the presence of at
least two incommensurate frequencies with an irrational ra-
tio. This condition creates a rough ergodic torus, which can
be destroyed when parameters are varied. The band-merging
crisis of ann-band ergodic torus has been suggested as one
mechanism for generating a SNA@7#. The crisis is related to
the homoclinic touching of manifolds of a saddle torus co-
existing with a stable torus in the phase space of the system.
This mechanism is not unique. The gradual fractalization of
a two-dimensional ergodic torus also apparently leads to a
SNA @8#.

Given that the appearance of a SNA is related to the de-
struction of a two-dimensional ergodic torus, we are faced
with the following question: Is the SNA regime typical only
of quasiperiodically driven systems or can it be observed in
other systems as well?

It is known that the regions of ergodic quasiperiodic mo-
tion in the parameter space of autonomous systems inR3 and
periodically driven systems inR3 can have nonzero measure.
Hence, a rough two-dimensional ergodic torusT2 can be
realized in these systems. When the nonlinearity of the sys-
tem is increased, the measure of the quasiperiodic region is
generally decreased while the measure of synchronization
regions is increased. Synchronization is thus associated with
the destruction ergodic tori in three-dimensional systems.
However,n-band two-dimensional tori (nT2) in the region
of quasiperiodic motion can be observed in systems with a
phase space of dimensionN>4. This suggests that a SNA
can appear via a band-merging crisis in these systems as
well.

The goals of this paper are to reveal band-merging bifur-
cations of ergodic tori in systems without external quasiperi-
odic forcing and to verify that the attractor arising after the
band-merging crisis is a SNA.

The paper is organized as follows. In Sec. II we describe

the basic properties of two coupled ring maps and a periodi-
cally forced oscillator with an inertial nonlinearity. In Sec.
III we show that a SNA exists in certain parameter ranges of
the autonomous system of two coupled ring maps. The SNA
is characterized by computation of autocorrelation functions.
In Sec. IV we analyze the appearance of a SNA in a system
of differential equations describing the dynamics of an oscil-
lator with an inertial nonlinearity. We summarize the results
in Sec. V.

II. BASIC MODELS

We investigate two models: an autonomous map inR4

and a differential system with harmonic forcing inR3.
The first model is two asymmetrically coupled ring maps:

xn115xn1V12~K1/2p!sin~2pxn!1g1yn

1A cos~2pun!, mod 1

yn115g1yn2~K1/2p!sin~2pxn!, ~1!

un115un1V22~K2/2p!sin~2pun!1g2~yn1vn!,

mod 1

vn115g2~yn1vn!2~K2/2p!sin~2pun!.

In the case ofg250, the system~1! is the ring map with
the quasiperiodic forcing at some values of the parameters
V2, K2. The winding number of this map is determined by
the parametersV2 andK2 and can be equal to an irrational
value ~the reciprocal of the golden mean, for example!.

When a small coupling coefficient (g2Þ0) is introduced,
feedback appears between the ring maps, and the analogy
between system~1! and the quasiperiodically driven map is
broken down. In this case, the system is two coupled maps.

The second model is a periodically driven oscillator with
an inertial nonlinearity. The dynamical equations of the sys-
tem in dimensionless variables have the following form:

ẋ5mx1y2xz1A sin~pt!,

ẏ52x, ~2!

ż52gz1g f~x!,

where
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f ~x!5H x2, x>0

0, x,0.

The parametersm andg determine the natural dynamics
of system~2!. The parameterA is the forcing amplitude,p is
the normalized forcing frequency, andt is the dimensionless
time. The dynamics of system~2! was studied in detail in@9#.

III. BAND-MERGING CRISIS IN COUPLED RING MAPS

As mentioned above, system~1! can be considered as a
quasiperiodically driven ring map wheng250. In this case
there are regimes of two-band ergodic tori 2T2 ~in terms of a
map, they correspond to a closed invariant curve! at some
parameter values. The band-merging crisis leads to the ap-
pearance of a SNA, which exists at a limit range of the
parameter space. We focus on the question of whether this
phenomenon takes place when a small coupling (g2Þ0) is
introduced.

The parameterK1 is varied while the other parameters are
fixed (V150.5, V250.5(A521), K250.03, A50.4,
g15g250.01). In the caseg2Þ0, the bifurcation associated
with the band merging of the invariant curve is found in the

region of ergodic motion at K15K1* (0.8783
,K1*,0.8784). Figures 1~a! and 1~b! plotted for each sec-
ond iteration show thexu projection of phase trajectories
before and after the band-merging crisis, respectively. In Fig.
1~a! only one band of the invariant curve can be observed,
while Fig. 1~b! shows the merging of two bands. It is impor-
tant to note that the Lyapunov exponents are not sensitive to
this bifurcation~Fig. 2!. Chaotic dynamics corresponding to
l1.0 occurs at larger values of the parameterK1
(K1.1.1). Negative values ofl1 in some ranges ofK1 are
due to the synchronization that inevitably occurs when cou-
pling is introduced.

The band-merging bifurcation leads to a SNA. While re-
vealed in numerical simulations, there is as yet no theorem

FIG. 1. Phase portraits of nonstrange and strange nonchaotic
attractors for system~1! at K150.8783 ~a! and K150.8784 ~b!.
Points are plotted for every second iteration. The largest Lyapunov
exponents for these cares arel1520.658 3531024 ~a! and
l150.188 3331023 ~b!. These exponents are equal to zero within
the limits of numerical accuracy.

FIG. 2. The largest Lyapunov exponent vs the parameterK1.

FIG. 3. The averaged squared autocorrelation function for the
variablex for the case of nonstrange~a! and strange~b! nonchaotic
attractors. Note the logarithmic scale of the axes.
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proving the existence of a SNA in this instance. Therefore, it
is necessary to confirm the fractal structure of the attractor. It
was shown in@10,11# that a SNA has a singular continuous
spectrum. To diagnose this kind of spectrum we use the
method proposed in@12#. The autocorrelation function
cx( i ) is determined as follows:

cx~ i !5
^x~n!x~n1 i !&2^x~n!&^x~n1 i !&

^x2~n!&2^x~n!&2
,

where n50,1,2, . . . is a discrete time coordinate, and
i50,1,2, . . . is a time shift.

To represent a singular continuous spectrum,cx( i ) must
satisfy the conditions

lim
i→`

cx~ i !Þ0,

lim
i→`

C~ i !50,

where

C~ i !5
1

i (j51

i21

cx
2~ j !.

The functionscx( i ), C( i ) for x(n) have been calculated for
both cases: before the band merging (K150.8783) and after
it (K150.8784). The first condition means that the spectrum
is not continuous, and is met in both cases because the band-
merging bifurcation does not lead to chaos. Figures 3~a! and
3~b! show that the average squared autocorrelation function
C( i ) goes to some constant level before the bifurcation
(K150.8783) while the character of this function is changed
after the bifurcation (K150.8784). This behavior ofC( i )
confirms the fact that the attractor arising at the band merg-
ing has a singular continuous spectrum and is therefore a
SNA. CalculatingC( i ) versus the parameterK1, we have
found that the SNA does not exist everywhere forK1.K1*
but is found within narrow parameter intervals, which alter-
nate with the regions of synchronization.

IV. BAND-MERGING CRISIS IN SELF-OSCILLATOR
WITH PERIODICAL FORCING

It was shown in @9# that there is a four-band two-
dimensional torus 4T2 in the phase space of system~2!.
When parameters are varied, the 4T2 torus is destroyed and a
transition to chaos takes place. However, we have found that
the 4T2 torus undergoes a band-merging bifurcation before
the chaotic attractor appears. The excitation parameterm is
chosen as a control parameter while the other parameters are

FIG. 4. Poincare´ sections of nonstrange~a! and strange~b! non-
chaotic attractors for system~2!, plotted for every fourth iteration.
The largest Lyapunov exponents for these cases are
l1520.37131023 ~a! and l1520.26531023 ~b!. These expo-
nents are equal to zero within the limits of numerical accuracy.

FIG. 5. The averaged squared autocorrelation function for the
variabley for the regime of nonstrange~a! and strange~b! noncha-
otic attractors.
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fixed (g50.3,A50.3,p50.111). The band-merging bifurca-
tion of the ergodic 4T2 torus occurs atm51.0621. As a
result of this bifurcation, a two-band attractor appears, but it
is not chaotic because the largest Lyapunov exponent tends
to zero within the limits of numerical accuracy. The signa-
ture of the spectrum of the Lyapunov exponents remains the
same~0, ‘‘0,’’ ‘‘ 2,’’ ‘‘ 2 ’’ ! before and after the bifurcation.
The projections of Poincare´ sections of the attractors by the
secant surfacex50 at m50.062 05 andm50.0621 are
shown in Figs. 4~a! and 4~b!, respectively. Plotting each
fourth iteration of the Poincare´ section, Fig. 4~a! presents one
band of the four-band invariant curve, while the band merg-
ing can be distinguished in Fig. 4~b!.

To detect the existence of the SNA, the behavior of the
functionC( i ) was investigated. The autocorrelation function
was calculated for the sequence of pointsy(n) of Poincare´
section; each second point was taken to avoid a periodic
component after the band merging. The calculation of the
autocorrelation function for system~2! relies on the fact that
the return time for the secant surface is constant in the re-
gime being considered. Figures 5~a! and 5~b! display the
functionC( i ) obtained for the attractor before and after the
bifurcation, respectively. Although the functionC( i ) de-

creases more slowly than in system~1!, the character of the
functionC( i ) after the bifurcation is the same. Thus, in sys-
tem~2! a SNA emerges as a result of the band-merging crisis
of an ergodic two-dimensional torus.

V. CONCLUSIONS

We have found numerically that a band-merging crisis of
the two-dimensional tori can lead to a SNA not only for the
systems with quasiperiodic forcing but also for the systems
with periodic excitation and systems of coupled oscillators.
However, open questions remain concerning whether other
mechanisms of SNA appearance are possible in such systems
and whether there is a transition from SNA to chaos exclud-
ing the synchronization phenomenon on the torus. It is clear
that SNA regimes can be realized in a wide class of dynami-
cal systems and are not restricted to systems with quasiperi-
odic forcing.
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